Skip to main content

Treasury Indexed Bonds

Treasury Indexed Bonds are medium to long-term securities for which the capital value of the security is adjusted for movements in the Consumer Price Index (CPI). Interest is paid quarterly, at a fixed rate, on the adjusted capital value. At maturity, investors receive the adjusted capital value of the security – the value adjusted for movement in the CPI over the life of the bond.

Coupon and Maturity (click for term sheet) Outstanding (face value, AUD millions) ISIN
3.00%  20 September 2025 4,042 AU0000XCLWP8
0.75%  21 November 2027 7,350 AU000XCLWAV1
2.50%  20 September 2030 7,292 AU0000XCLWV6
0.25%  21 November 2032 6,000 AU0000171134
2.00%  21 August 2035 6,500 AU000XCLWAF4
1.25%  21 August 2040 5,900 AU000XCLWAO6
1.00% 21 February 2050 4,550 AU0000024044

Treasury Indexed Bonds on issue as at 30 May 2025. This table is updated weekly.

The Information Memorandum for Treasury Indexed Bonds (PDF) provides detailed information about Treasury Indexed Bonds including the terms and conditions of their issue.

Treasury Indexed Bonds are quoted and traded on a real yield to maturity basis rather than on a price basis. This means the price is calculated by inputting the real yield to maturity into the appropriate pricing formula.

The price per $100 face value is calculated using the following pricing formulae:

(1) Basic Formula 

\(\Large P = v^\frac{f}{d}\left(g \left( 1 + \require{enclose}a_{\enclose{actuarial}{n}}\right) + 100 v^{n} \right) \LARGE \frac{K_{t}(1+\frac{p}{100})^{\frac{-f}{d}}}{100}\)

 

(2) Ex-Interest Formula 

\( \Large P = v^\frac{f}{d}\left(g\require{enclose}a_{\enclose{actuarial}{n}} + 100 v^{n} \right) \LARGE \frac{K_{t}(1+\frac{p}{100})^{\frac{-f}{d}}}{100} \)

 

In these formulae: 

\(\large P=\) the price per $100 face value. \( P \) is rounded to three decimal places in all cases except during the final ex-interest period for the bond, where it is unrounded.

\(\large i=\) the annual real yield (per cent) to maturity divided by 400.

\(\large v=\LARGE\frac{1}{1 + i} \)

\(\large f=\) the number of days from the date of settlement to the next interest payment date.

\(\large d=\) the number of days in the quarter ending on the next interest payment date.

\(\large g=\) the fixed quarterly interest rate payable (equal to the annual fixed rate divided by 4).

\(\large n=\) the number of full quarters between the next interest payment date and the date of maturity.

\(\large \require{enclose}a_{\enclose{actuarial}{n}}=\large v + v^2 + ... + v^n = \Large \frac{1 - v^n}{i} \) \(.\ \mathrm{Except \, if\ \,} i = 0 \ \mathrm{\,then\,}\ \require{enclose}a_{\enclose{actuarial}{n}} = n \)

\( \large p=\) half the semi-annual change in the Consumer Price Index over the two quarters ending in the quarter which is two quarters prior to that in which the next interest payment falls (for example, if the next interest payment is in November, is based on the movement in the Consumer Price Index over the two quarters ending the June quarter preceding).

\(\Large =\frac{100}{2}\left[ \frac{CPI_t}{CPI_{t-2}}-1\right] \)

where \( CPI_{t} \) is the Consumer Price Index for the second quarter of the relevant two quarter period; and \( CPI_{t-2} \) is the Consumer Price Index for the quarter immediately prior to the relevant two quarter period. It is rounded to two decimal places.

\(\large  K\)s are indexation factors (also known in the market as 'the nominal value of the principal' or 'capital value').

\( \large K_t= \) nominal value of the principal at the next interest payment date.

\( \large K_{t-1}= \) nominal value of the principal at the previous interest payment date.

The relationship between successive \( K \) values is as follows:

\( \large K_t= \)  \( \large K_{t-1}\left[1+ \Large \frac{p}{100}\right] \)

 

Worked Examples

(1) Basic Formula 

Consider the 1.25% 21 August 2040 Treasury Indexed Bond, with a real yield to maturity of 0.10 per cent and settlement date of 15 September 2019.

\(\Large P = v^\frac{f}{d}\left(g \left( 1 + \require{enclose}a_{\enclose{actuarial}{n}}\right) + 100 v^{n} \right) \LARGE \frac{K_{t}(1+\frac{p}{100})^{\frac{-f}{d}}}{100}\)

where:

       \( \large\ i=\Large\frac{0.10}{400}= \) \(\large 0.00025\)

       \( \large\ v=\Large\frac{1}{1+i}=\frac{1}{1+0.00025}= \) \(\large 0.99975\)

       \(\large \require{enclose}a_{\enclose{actuarial}{n}}=\Large \frac{1 - v^n}{i}=\frac{1-0.99975^{83}}{0.00025}=\)\(\large 82.1346\)

       \( \large\ f = 67 \), the number of days from 15 September 2019 to 21 November 2019

       \( \large\ d = 92 \), the number of days from 21 August 2019 to 21 November 2019

       \( \large\ g =\Large\frac{1.25}{4}= \) \(\large 0.3125\)

       \( \large\ n = 83\), the number of full quarters from 21 November 2019 to 21 August 2040

       \( CPI_{t-2} = 114.1\), the Consumer Price Index for the December 2018 quarter 

       \( CPI_{t} = 114.8\), the Consumer Price Index for the June 2019 quarter

       \( \large p =\)\(\Large \frac{100}{2}\left[ \frac{CPI_t}{CPI_{t-2}}-1\right] = \frac{100}{2}\left[ \frac{114.8}{114.1}-1\right] = 0.31\)

       \( \large K_{t-1}= 107.12\), the \( K \) value of this bond on 21 August 2019 (the previous interest payment date)

       \( \large K_t= \)  \( \large K_{t-1}\left[1+\frac{p}{100}\right] = 107.12\left[1+\frac{0.31}{100}\right] = 107.45 \), the \( K \) value for 21 November 2019 (the next interest payment date)

\(\Large P = v^\frac{f}{d}\left(g \left( 1 + \require{enclose}a_{\enclose{actuarial}{n}}\right) + 100 v^{n} \right) \LARGE \frac{K_{t}(1+\frac{p}{100})^{\frac{-f}{d}}}{100} \)

\(\Large P = 0.99975^\frac{67}{92}\left(0.3125 \left( 1 + 82.1346\right) + 100 \times 0.99975^{83} \right) \LARGE \frac{107.45(1+\frac{0.31}{100})^{\frac{-67}{92}}}{100} \)

\(\Large P = 132.835\)

 

(2) Ex-Interest Formula  

Consider the 1.25% 21 August 2040 Treasury Indexed Bond, with a real yield to maturity of 0.10 per cent and settlement date of 15 November 2019.

\( \Large P = v^\frac{f}{d}\left(g\require{enclose}a_{\enclose{actuarial}{n}} + 100 v^{n} \right) \LARGE \frac{K_{t}(1+\frac{p}{100})^{\frac{-f}{d}}}{100} \)

where:

       \( \large\ i=\Large\frac{0.10}{400}= \) \(\large 0.00025\)

       \( \large\ v=\Large\frac{1}{1+i}=\frac{1}{1+0.00025}= \) \(\large 0.99975\)

       \(\large \require{enclose}a_{\enclose{actuarial}{n}}=\Large \frac{1 - v^n}{i}=\frac{1-0.99975^{83}}{0.00025}=\)\(\large 82.1346\)

       \( \large\ f = 6 \), the number of days from 15 November 2019 to 21 November 2019

       \( \large\ d = 92 \), the number of days from 21 August 2019 to 21 November 2019

       \( \large\ g =\Large\frac{1.25}{4}= \) \(\large 0.3125\)

       \( \large\ n = 83\), the number of full quarters from 21 November 2019 to 21 August 2040

       \( CPI_{t-2} = 114.1\), the Consumer Price Index for the December 2018 quarter 

       \( CPI_{t} = 114.8\), the Consumer Price Index for the June 2019 quarter

       \( \large p =\)\(\Large \frac{100}{2}\left[ \frac{CPI_t}{CPI_{t-2}}-1\right] = \frac{100}{2}\left[ \frac{114.8}{114.1}-1\right] = 0.31\)

       \( \large K_{t-1}= 107.12\), the \( K \) value of this bond on 21 August 2019 (the previous interest payment date)

       \( \large K_t= \)  \( \large K_{t-1}\left[1+\frac{p}{100}\right] = 107.12\left[1+\frac{0.31}{100}\right] = 107.45 \), the \( K \) value for 21 November 2019 (the next interest payment date)

\(\Large P = v^\frac{f}{d}\left(g \left( \require{enclose}a_{\enclose{actuarial}{n}}\right) + 100 v^{n} \right) \LARGE \frac{K_{t}(1+\frac{p}{100})^{\frac{-f}{d}}}{100} \)

\(\Large P = 0.99975^\frac{6}{92}\left(0.3125 \times 82.1346 + 100 \times 0.99975^{83} \right) \LARGE \frac{107.45(1+\frac{0.31}{100})^{\frac{-6}{92}}}{100} \) 

\(\Large P = 132.794\)

 

Record Date Examples

Example 1

The 2.50% 20 September 2030 Treasury Indexed Bond makes a Coupon Interest Payment on Thursday, 20 June 2024. The Record Date for this Coupon Interest Payment is Tuesday, 12 June 2024. 

Example 2

The 1.25% 21 August 2040 Treasury Indexed Bond makes a Coupon Interest Payment on Monday, 21 August 2023. The Record Date for this Coupon Interest Payment is Friday, 11 August 2023 (ten days prior to the Coupon Interest Payment Date, since the date eight days prior to the Coupon Interest Payment Date falls on a weekend).

Market makers

There is an active secondary market for Treasury Indexed Bonds. These institutions (listed alphabetically) have indicated that they make markets in Treasury Indexed Bonds. The level of activity can vary between institutions.

Barrenjoey_logo
Barrenjoey
Sydney: +61 2 9903 6777
Abu Dhabi: +971 2 565 9322
Citi logo
Citi 
Sydney: +61 2 8225 6450
London: +44 20 7986 9521
CBA_logo_DP
Commonwealth Bank of Australia
Sydney: +61 2 9117 0020
Singapore: +65 6032 3809
London:+44 20 7329 6444 
Deutsche Bank logo
Deutsche Bank AG
Sydney: +61 2 8258 1444
London: +44 20 7547 1931
Tokyo: +81 3 5156 6195
JPM Logo
J.P. Morgan
Sydney: +61 2 9003 7933
London: +44 20 7134 0194
UBS logo
UBS AG
Sydney: +61 2 9324 2222
London: +44 20 7567 3645
Westpac logo
Westpac Banking Corporation
Sydney: +61 2 8204 2711
Singapore: +65 6309 3877
London: +44 20 7621 7620
NYC: +1 212 551 1806